
NAG Fortran Library Routine Document

H03ADF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

H03ADF finds the shortest path through a directed or undirected acyclic network using Dijkstra’s
algorithm.

2 Specification

SUBROUTINE H03ADF(N, NS, NE, DIRECT, NNZ, D, IROW, ICOL, SPLEN, PATH,
1 IWORK, WORK, IFAIL)

INTEGER N, NS, NE, NNZ, IROW(NNZ), ICOL(NNZ), PATH(N),
1 IWORK(3*N+1), IFAIL
real D(NNZ), SPLEN, WORK(2*N)
LOGICAL DIRECT

3 Description

This routine attempts to find the shortest path through a directed or undirected acyclic network, which
consists of a set of points called vertices and a set of curves called arcs that connect certain pairs of
distinct vertices. An acyclic network is one in which there are no paths connecting a vertex to itself. An
arc whose origin vertex is i and whose destination vertex is j can be written as i ! j. In an undirected
network the arcs i ! j and j ! i are equivalent (i.e., i $ j), whereas in a directed network they are
different. Note that the shortest path may not be unique and in some cases may not even exist (e.g., if the
network is disconnected).

The network is assumed to consist of n vertices which are labelled by the integers 1; 2; . . . ; n. The lengths
of the arcs between the vertices are defined by the n by n distance matrix D, in which the element dij
gives the length of the arc i ! j; dij ¼ 0 if there is no arc connecting vertices i and j (as is the case for an
acyclic network when i ¼ j). Thus the matrix D is usually sparse. For example, if n ¼ 4 and the
network is directed, then

D ¼

0 d12 d13 d14
d21 0 d23 d24
d31 d32 0 d34
d41 d42 d43 0

0
BB@

1
CCA:

If the network is undirected, D is symmetric since dij ¼ dji (i.e., the length of the arc i ! j � the length

of the arc j ! i).

The method used by H03ADF is described in detail in Section 8.

4 References

Dijkstra E W (1959) A note on two problems in connection with graphs Numer. Math. 1 269–271

5 Parameters

1: N – INTEGER Input

On entry: n, the number of vertices.

Constraint: N � 2.

H – Operations Research H03ADF

[NP3546/20A] H03ADF.1



2: NS – INTEGER Input
3: NE – INTEGER Input

On entry: ns and ne, the labels of the first and last vertices, respectively, between which the shortest
path is sought.

Constraints:

1 � NS � N,
1 � NE � N,
NS 6¼ NE.

4: DIRECT – LOGICAL Input

On entry: indicates whether the network is directed or undirected as follows:

if DIRECT ¼ :TRUE:, the network is directed;

if DIRECT ¼ :FALSE:, the network is undirected.

5: NNZ – INTEGER Input

On entry: the number of non-zero elements in the distance matrix D.

Constraints:

if DIRECT ¼ :TRUE:, 1 � NNZ � N� ðN� 1Þ;
if DIRECT ¼ :FALSE:, 1 � NNZ � N� ðN� 1Þ=2.

6: D(NNZ) – real array Input

On entry: the non-zero elements of the distance matrix D, ordered by increasing row index and
increasing column index within each row. More precisely, DðkÞ must contain the value of the non-
zero element with indices (IROWðkÞ; ICOLðkÞ); this is the length of the arc from the vertex with
label IROWðkÞ to the vertex with label ICOLðkÞ. Elements with the same row and column indices
are not allowed. If DIRECT ¼ :FALSE:, then only those non-zero elements in the strict upper
triangle of D need be supplied since dij ¼ dji. (F11ZAF may be used to sort the elements of an

arbitrarily ordered matrix into the required form. This is illustrated in Section 9.)

Constraint: DðkÞ > 0:0, for k ¼ 1; 2; . . . ;NNZ.

7: IROW(NNZ) – INTEGER array Input/Output
8: ICOL(NNZ) – INTEGER array Input

On entry: IROWðkÞ and ICOLðkÞ must contain the row and column indices, respectively, for the
non-zero element stored in DðkÞ.
Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):
IROWðk� 1Þ < IROWðkÞ, or
IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ < ICOLðkÞ, for k ¼ 2; 3; . . . ;NNZ.
In addition, if DIRECT ¼ .TRUE., 1 � IROWðkÞ � N, 1 � ICOLðkÞ � N and
IROWðkÞ 6¼ ICOLðkÞ;
if DIRECT ¼ :FALSE:, 1 � IROWðkÞ < ICOLðkÞ � N.

On exit: IROW is used as internal workspace prior to being restored and hence is unchanged.

9: SPLEN – real Output

On exit: the length of the shortest path between the specified vertices ns and ne.

H03ADF NAG Fortran Library Manual

H03ADF.2 [NP3546/20A]



10: PATH(N) – INTEGER array Output

On exit: contains details of the shortest path between the specified vertices ns and ne. More
precisely, NS ¼ PATHð1Þ ! PATHð2Þ ! . . . ! PATHðpÞ ¼ NE for some p � n. The remaining
ðn� pÞ elements are set to zero.

11: IWORK(3*N+1) – INTEGER array Workspace

12: WORK(2*N) – real array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NS < 1,
or NS > N,
or NE < 1,
or NE > N,
or NS ¼ NE.

IFAIL ¼ 2

On entry, NNZ > N� ðN� 1) when DIRECT ¼ :TRUE:,
or NNZ > N� ðN� 1Þ=2 when DIRECT ¼ :FALSE:,
or NNZ < 1.

IFAIL ¼ 3

On entry, IROWðkÞ < 1 or IROWðkÞ > N or ICOLðkÞ < 1 or ICOLðkÞ > N or
IROWðkÞ ¼ ICOLðkÞ for some k when DIRECT ¼ :TRUE:.

IFAIL ¼ 4

On entry, IROWðkÞ < 1 or IROWðkÞ � ICOLðkÞ or ICOLðkÞ > N for some k when
DIRECT ¼ .FALSE..

IFAIL ¼ 5

DðkÞ � 0:0 for some k.

IFAIL ¼ 6

On entry, IROWðk� 1Þ > IROWðkÞ or IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ > ICOLðkÞ
for some k.

H – Operations Research H03ADF

[NP3546/20A] H03ADF.3



IFAIL ¼ 7

On entry, IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ ¼ ICOLðkÞ for some k.

IFAIL ¼ 8

No connected network exists between vertices NS and NE.

7 Accuracy

The results are exact, except for the obvious rounding errors in summing the distances in the length of the
shortest path.

8 Further Comments

This routine is based upon Dijkstra’s algorithm (see Dijkstra (1959)), which attempts to find a path
ns ! ne between two specified vertices ns and ne of shortest length dðns; neÞ.
The algorithm proceeds by assigning labels to each vertex, which may be temporary or permanent. A
temporary label can be changed, whereas a permanent one cannot. For example, if vertex p has a
permanent label ðq; rÞ, then r is the distance dðns; rÞ and q is the previous vertex on a shortest length
ns ! p path. If the label is temporary, then it has the same meaning but it refers only to the shortest
ns ! p path found so far. A shorter one may be found later, in which case the label may become
permanent.

The algorithm consists of the following steps.

1. Assign the permanent label ð�; 0Þ to vertex ns and temporary labels ð�;1Þ to every other vertex.
Set k ¼ ns and go to (2).

2. Consider each vertex y adjacent to vertex k with a temporary label in turn. Let the label at k be ðp; qÞ
and at yðr; sÞ. If q þ dky < s, then a new temporary label ðk; q þ dkyÞ is assigned to vertex y;
otherwise no change is made in the label of y. When all vertices y with temporary labels adjacent to
k have been considered, go to (3).

3. From the set of temporary labels, select the one with the smallest second component and declare that
label to be permanent. The vertex it is attached to becomes the new vertex k. If k ¼ ne go to (4).
Otherwise go to (2) unless no new vertex can be found (e.g., when the set of temporary labels is
‘empty’ but k 6¼ ne, in which case no connected network exists between vertices ns and ne).

4. To find the shortest path, let ðy; zÞ denote the label of vertex ne. The column label (z) gives dðns; neÞ
while the row label (y) then links back to the previous vertex on a shortest length ns ! ne path. Go
to vertex y. Suppose that the (permanent) label of vertex y is ðw; xÞ, then the next previous vertex is
w on a shortest length ns ! y path. This process continues until vertex ns is reached. Hence the
shortest path is

ns ! . . . ! w ! y ! ne;

which has length dðns; neÞ.

H03ADF NAG Fortran Library Manual

H03ADF.4 [NP3546/20A]



9 Example

To find the shortest path between vertices 1 and 11 for the undirected network

1

2

3

4

5

6

7

8

9

10

11

5

5

6

4

4

3

1

9

8

7

6

1

2

2

1

1

1
4

4

2

9.1 Program Text

* H03ADF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NNZMAX
PARAMETER (NMAX=100,NNZMAX=1000)
CHARACTER DUP, ZERO
PARAMETER (DUP=’F’,ZERO=’R’)

* .. Local Scalars ..
real SPLEN
INTEGER IFAIL, J, LENC, N, NE, NNZ, NS
LOGICAL DIRECT

* .. Local Arrays ..
real D(NNZMAX), WORK(2*NMAX)
INTEGER ICOL(NNZMAX), IROW(NNZMAX), IWORK(3*NMAX+1),

+ PATH(NMAX)
* .. External Subroutines ..

EXTERNAL F11ZAF, H03ADF
* .. Executable Statements ..

WRITE (NOUT,*) ’H03ADF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, NS, NE, NNZ, DIRECT
IF (N.LE.NMAX .AND. NNZ.LE.NNZMAX) THEN

*
* Read D, IROW and ICOL from data file.
*

READ (NIN,*) (D(J),IROW(J),ICOL(J),J=1,NNZ)
*
* Reorder the elements of D into the form required by H03ADF.
*

IFAIL = 0
CALL F11ZAF(N,NNZ,D,IROW,ICOL,DUP,ZERO,IWORK,IWORK(N+2),IFAIL)

*
* Find the shortest path between vertices NS and NE.
*

IFAIL = 0
CALL H03ADF(N,NS,NE,DIRECT,NNZ,D,IROW,ICOL,SPLEN,PATH,IWORK,

+ WORK,IFAIL)
*

IF (IFAIL.EQ.0) THEN
*
* Print details of shortest path.
*

DO 20 J = 0, N - 1
IF (PATH(J+1).EQ.0) THEN

H – Operations Research H03ADF

[NP3546/20A] H03ADF.5



LENC = J
GO TO 40

END IF
20 CONTINUE

LENC = N
40 CONTINUE

WRITE (NOUT,99999) ’Shortest path = ’, (PATH(J),J=1,LENC)
WRITE (NOUT,99998) ’Length of shortest path = ’, SPLEN

END IF
END IF
STOP

*
99999 FORMAT (/1X,A,10(I2,:’ to ’))
99998 FORMAT (/1X,A,G16.6)

END

9.2 Program Data

H03ADF Example Program Data
11 1 11 20 F :Values of N, NS, NE, NNZ and DIRECT
6.0 6 8
1.0 8 9
2.0 9 11
4.0 2 5
1.0 3 4
6.0 1 3
4.0 3 6
1.0 4 6
2.0 2 3
3.0 4 7
5.0 1 2
7.0 6 10
1.0 5 6
4.0 8 11
9.0 5 9
1.0 6 7
8.0 7 9
4.0 10 11
2.0 9 10
5.0 1 4 :End of D, IROW, ICOL

9.3 Program Results

H03ADF Example Program Results

Shortest path = 1 to 4 to 6 to 8 to 9 to 11

Length of shortest path = 15.0000

H03ADF NAG Fortran Library Manual

H03ADF.6 (last) [NP3546/20A]


	H03ADF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	NS
	NE
	DIRECT
	NNZ
	D
	IROW
	ICOL
	SPLEN
	PATH
	IWORK
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



